Review: Photochemical and Thermochemical Production of Solar Fuels from H2O and CO2 Using Metal Oxide Catalysts

Greg P. Smestad1̈,† and Aldo Steinfield1̈,§

1 Solar Energy Materials & Solar Cells, P.O. Box 5729, San José, California 95150, United States
2 Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
3 Solar Technology Laboratory, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland

ABSTRACT: Metal oxides are reviewed as catalysts to convert H2O and CO2 to fuels using solar energy. For photochemical conversion, TiO2 has been found to be the most stable and useful oxide material, but it is currently limited by its large bandgap and a mismatch between its conduction band and the redox couples for water splitting and CO2 reduction. A theoretical framework has been utilized to understand the basic thermodynamics and energetics in photochemical energy conversion systems. This is applied to model systems comprised of Ag2O and AgCl to examine why the former reacts thermochemically in air, while the latter reacts photochemically. For thermochemical conversion, zinc-, ceria-, and ferrite-based redox cycles are examined and examples of high-temperature solar reactors driven by concentrated solar radiation are presented. For CO2 splitting, theoretical solar-to-fuel energy conversion efficiencies can be up to 26.8% for photochemical systems, and can exceed 30% for thermochemical systems, provided that sensible heat is recovered between the redox steps.

■ INTRODUCTION

The conversion of solar energy into useful forms has reached a critical stage where large-scale industrial applications are allowing it to make significant and promising contributions to our present and future energy needs. In this review, we present some basic concepts and survey a few of the recent developments in the conversion of solar energy into fuel. Several types of systems are possible, some of which are based on thermochemistry,1 while others are based on photochemistry.2 Photovoltaic cells and modules3−7 have also emerged as an important part of the energy mixture of many countries, but they will not be fully examined in this review. The storage of solar energy has recently been reported in this journal.8 The first section of this review focuses on the photochemical production of fuels and includes a generalized framework that can be used to understand the energetics and mechanism of both photovoltaic (PV) solar cells, as well as solar photochemistry using semiconductor materials.9−12 This framework will be applied to a consideration of Ag2O, which is a model metal oxide system that, in air, seems to react thermochromically and not photochemically. The second half of this review focuses on the solar thermochemical splitting of H2O and CO2 via metal oxide redox cycles. A comparison between metal oxide and solar electrolysis fuel-forming systems will also be presented.

■ DISCUSSION

Photochemistry and Quantum Solar Converters. Two forms of solar energy conversion are considered. One is thermal conversion, where work can be extracted after sunlight is absorbed as thermal energy, and the other is quantum conversion, where the work output can be taken directly from the light absorber. In a thermal system, solar radiation is absorbed as heat, preferably at some high temperature, which, in turn, is used to drive a heat engine. In a quantum system, a fixed number of photons yield a fixed number of energy quanta, such as excited electrons. Photochemistry therefore differs from thermochemistry in that the former involves the energy of a photon in a chemical reaction, while the latter involves the absorption of heat to overcome activation barriers and affect chemical equilibria. Solar photochemistry utilizes concepts in quantum solar energy conversion that stem from the consideration of the excited state that is produced via the absorption of light. The light absorber can be a semiconductor, a molecule, or an organic compound. The photon-induced excitation may produce work, or it may decay to dissipate the excitation energy as heat or light (i.e., luminescence). Regarding the latter, if the interaction of light with a light absorber material produces electrons, or a species in a higher energetic state, then the reverse process, which must also be possible, will produce light emission from the material.13 This is the definition of photoluminescence, which is present, to some degree, in all quantum solar converters.

Many researchers have used these concepts and applied detailed balance calculations to understand the thermodynamic limits of quantum solar converters such as photochemical energy storage systems and photovoltaic solar cells.13−24 For photochemical solar conversion and storage systems, the work of Ross15,25−27 was groundbreaking, as was the early work of Archer and Bolton.16 These detailed balance studies have continued up to the present time and are especially useful in studying PV solar cells, photosynthetic bacterial reaction centers, and photochemical energy conversion. Recent results
show that, for the standard solar spectrum (AM1.5), theoretical energy conversion efficiencies can be up to 26.8% for photochemical systems. This compares favorably with the ideal limit for solar cells (30%–33%) and the measured efficiency for silicon solar cells, which are now in the range of 15%–24%. In a solar cell, the excitation takes the form of an electron–hole pair that is separated in order to produce an external current and voltage. In photosynthesis, the spatially separated electrons may reduce compounds that lead to the fixation of CO₂ and to the storage of biomass that can be used as food and fuel. With so many varied quantum solar converter systems in the literature, it is useful to briefly consider a generalized model that can be used to inter-relate and discuss recent results.

Thermodynamics and Quantum Solar Converters. A general solar quantum converter scheme is shown in Figure 1. The light absorber functions as a “pump” to move electrons and holes between the two sides separated by an interface or barrier. Back reaction, as well as nonradiative recombination and luminescence, compete with energy conversion and work production (shown as horizontal arrows). This allows a difference to develop between the concentration of excited states on the two sides of a barrier. Work can be produced when the electrons and holes are extracted (horizontal arrows). Radiative and nonradiative recombination competes with work extraction. The difference in chemical potentials (μ) is indicated.

Figure 1. Generalized solar converter applicable to both photochemical systems, including photosynthesis and solar cells (photovoltaics). The absorber pumps electrons from a donor (D) to an acceptor (A) via lower and upper levels (LL and UL, respectively). This allows a difference to develop between the concentration of excited states on the two sides of a barrier. Work can be produced when the electrons and holes are extracted (horizontal arrows). Radiative and nonradiative recombination competes with work extraction. The difference in chemical potentials (μ) is indicated.

\[\dot{n}(\mu_A - \mu_D) = \dot{n}kT_0 \ln \left(\frac{n_A p_A}{n_D p_D} \right) \leq \dot{n} kT_0 \ln \left(\frac{n^* p^*}{n_D p_D} \right) \] (1a)

where k is Boltzmann’s constant. This equation reflects the view that quantum solar conversion can be treated like a chemical reaction involving the exchange of chemical potential, or Gibbs free energy, between the incident photons and the excited state of the electrons and holes. The photoproduct can be electrons and holes for a solar cell, or these species can go on to produce reduced and oxidized products in photochemical or electrochemical reactions. If q is the charge on an electron, μ = qV and \(\dot{n}q = I \) (i.e., the electrical current). We then have, for the case of a solar cell, that the left-hand side of eq 1a becomes the current multiplied by the voltage at the terminals of the device.

For a time-symmetric quantum solar conversion system, one can also demonstrate that if entropy production is the minimum allowed by thermodynamics, the power production (i.e., the rate of work extraction) will be maximized. Using the concepts of irreversible and finite-time thermodynamics, it has been shown that the maximum rate of work extraction in any power converting system is given by the reversible work production rate (\(W_{rev} \)) minus the product of the total entropy generation rate (\(S_{tot} \)) and the temperature (\(T_0 \)). The former is described by a Carnot-type factor, while the latter defines the dissipation of available work. Starting with the generalized Planck equation, and using the entropy involved in the absorption and emission of light, Parrot, as well as Markvart and Landsberg, have derived an equation for a quantum solar converter of the same form as that obtained by Berry and co-workers. Combining the results from these authors, one obtains

\[\dot{n}(\mu_A - \mu_D) = W_{rev} - T_0 S_{tot} \] (1b)

The converter temperature is \(T_0 \) and the source temperature (i.e., the sun) is \(T_S \). These equations illustrate that a quantum solar converter, such as a solar cell or photochemical converter, maintains a nonequilibrium state from which work can be extracted if entropy production does not dissipate the spatial differences between electrons and holes. Not explicitly shown in Figure 1 are the important interface and defect states that may dissipate energy via nonradiative recombination. The equations and approach above are called “general” or “generalized”, because they apply to quantum solar converters, regardless of the specific details or design of the system.

With this general framework in mind, the topic of thermochemical reduction of metal oxides will be introduced, using the example of silver oxide. This will be compared and contrasted with silver chloride, which reacts photochemically to form reduced silver. Figure 1 and the concepts surrounding eqs 1a and 1b will then be utilized to examine the results for these materials and review some recent results using metal oxides for the photochemical conversion of solar energy. Finally, several promising thermochemical systems will be described and such systems will be compared to photochemical schemes and solar fuel production methods using solar-generated electricity coupled to an electrolyzer.
Silver Oxide and Silver Chloride: Thermochemistry and Photochemistry. Silver oxide and alkali halide-based photocathodes are commonly used in photodetectors and photomultipliers. As shown in previous work, these materials can simultaneously convert heat and light into electrical work when they are utilized as photocathodes in thermionic diodes. This may also be possible using a suitable photochemical reaction. This would be desirable, since the storage of solar energy could be more efficiently achieved. An S1 photocathode comprised of Ag₂O·Cs was used in vacuum phototube experiments to learn that photoexcited electrons can produce electrical work concurrently with thermionic conversion. Recently, Ag₂O has been found to be a stable photocathode in aqueous solution. The CB edge for Ag₂O was taken from the literature for the oxide in aqueous solution.

For the process in Figure 2, the thermal decomposition reaction Ag₂O can be envisioned as the following reduction:

\[
\text{Ag}_2\text{O} + \text{H}_2\text{O} + 2e^- \rightarrow 2\text{Ag} + 2\text{OH}^-
\]

\[
E^0 = +0.342 \text{ V}
\]

\[
\text{Ag}_2\text{O} \rightarrow 2\text{Ag} + \frac{1}{2}\text{O}_2
\]

It is reasonable to believe that reaction 2 occurs in aqueous environments, or in the presence of moisture. The corresponding half-reaction for the oxidation may be O₂/ OH⁻ (0.401 V), but several other reactions involving water and oxygen are also possible. At elevated temperatures in air or vacuum, the mechanism for reaction 3 is thought to occur via dissociation and evaporation in the form of free Ag atoms and O₂ with the simultaneous condensation of Ag vapor. The free energy of formation of Ag₂O is approximately −11.2 kJ/mol at room temperature, with the corresponding free energy of formation per molecule being ≈0.1 eV. It increases to zero at a temperature near 360°C. The activation energy for thermal decomposition, the forward direction in reaction 3, is 120–150 kJ/mol (1.2–1.5 eV). Since the bandgap of Ag₂O is near 1.3 eV, it is therefore reasonable to postulate that the reaction 3 should occur via the absorption of visible light.

Another reason to believe that Ag₂O should be photochemically active is that the reactions above are analogous with those for AgCl. This silver halide compound decomposes via

\[
\text{AgCl} + e^- \rightarrow \text{Ag} + \text{Cl}^- \quad E^0 = +0.222 \text{ V}
\]

\[
\text{AgCl} \rightarrow \text{Ag} + \frac{1}{2}\text{Cl}_2
\]

Energy levels in Figure 2 for these reactions can be plotted only approximately, since the nucleation of silver clusters increases the redox potential. To test the mechanism of Figure 2 and the proposed silver oxide photochemical reduction reaction, some tests have been carried out. The results are relevant to the subsequent review of recent work on solar photochemistry and thermochemistry that utilize metal oxides. We will examine whether these chemical mechanisms can be used together synergistically.

Silver Oxide Photochemistry Setup. Silver oxide and silver chloride powders (Fluka) were reagent grade and were used without further purification. The thermogravimetry (TG)
analysis for silver oxide decomposition in darkness and under illumination was undertaken using a Netzsch Simultaneous Thermal Analysis system (Model STA 409) at a scan rate of 0.5°/min from 50 °C to 550 °C. The sample (<50 mg) was distributed on the top of an alumina pedestal that was attached to the sensitive balance of the STA 409 system. This pedestal rested on a thermocouple that provided a means for temperature measurement and control. A quartz tube allowed a Tungsten Halogen lamp to irradiate the sample from above. IR radiation was partially removed from the input beam using a Schott BG38 glass filter. A calibrated silicon detector established that the white light irradiance on the powder was in the range of 150–200 W/m². An air stream was used to carry away any products of decomposition. Measurements were also undertaken that determined the sample’s reflectivity at a fixed wavelength as a function of temperature.45,46 Temperature was measured by affixing a thermocouple to the Ag₂O sample. This removed the uncertainties in the temperature exhibited by the TG measurements, in which the thermocouple was some distance from the surface of the sample.

Silver Oxide Results. Figures 3 and 4 show the results of TG and differential thermogravimetry (DTG) analyses. Both for the Ag₂O sample measured in darkness and for the illuminated sample, the weight remains unchanged through most of the temperature range and then decreases very gradually beyond 250 °C (not shown on the plots). It is near this temperature that the light and dark curves diverge, with the illuminated Ag₂O sample losing as much as 0.25% in weight by the time 300 °C is reached (see Figure 3). At higher temperatures, the divergence of the light and dark curves is more pronounced until an asymptotic decrease is reached near 350–360 °C, with the transition temperature for the sample measured under illumination being ∼10 °C lower than in darkness. The Ag₂O sample in darkness exhibits a near-ideal weight loss (near 6.9%) for the reaction in reaction 3, while the curve obtained for the illuminated sample levels off beyond 7.6%.

Although reaction 3 proceeds in darkness at elevated temperatures, it does not proceed at appreciable rates under illumination at room temperature or at temperatures of <250 °C. As is shown in Figures 3 and 4, there is, however, an ∼10 °C shift to lower temperatures under illumination. This may merely be due to a heating effect of the light and the difference between the surface and thermocouple temperatures. The shift in the temperature in Figures 3 and 4 was not observed using an experimental setup that measured the Ag₂O surface temperature using a pyranometer. The reflectivity results also indicated that Ag₂O does not seem to strongly react photochemically at elevated temperatures. The reflectivity value at visible wavelengths went from 10% to 60% at a temperature of ∼360 °C, regardless of whether the sample was illuminated.

The TG, DTG, and reflectivity measurements do not positively identify that there is a strong effect from photochemistry that occurs during the thermochemical decomposition of Ag₂O in air. In contrast with Ag₂O, AgCl was observed to react photochemically at room temperature to produce reduced silver. Application of heat accelerated the reaction so that it was complete (at ∼1% weight loss) at temperatures of <100 °C. One would expect that both Ag₂O and AgCl would react photochemically in an analogous way. One reason why Ag₂O does not significantly react photochemically in air may involve the back reaction shown in Figures 1 and 2. Silver and Cl₂ diffusion in AgCl may be more rapid than Ag and O₂ diffusion in Ag₂O, and this may result in longer times for energy-dissipating reactions to occur.34,43,44 Nonradiative recombination at defects and at the surface of the oxide could also effectively counter the accumulation of charge carriers created via light excitation. This is thought to be the case for one elevated temperature study of ZnO particles under irradiation by light.47 Other researchers studying carbon gasification using CO₂ at high temperatures have proposed a photocatalytic effect on ZnO in addition to thermochemical processes.48 This leaves some uncertainty as to whether a metal oxide system can be designed that can efficiently store solar energy using both thermochemical and photochemical mechanisms.

Further tests are required to determine if there are subtle enhancements in Ag₂O thermal decomposition, in air, while it is illuminated. As reported previously, Ag₂O can react photochemically in aqueous solution near room temperature.33 The results that have been presented demonstrate that the energetics shown in Figures 1 and 2 do not solely determine the viability of a photochemical reaction for use in solar conversion. One can utilize the previously described theoretical
framework to gain insights on this assertion. From eqs 1a and 1b, we know that a difference in the concentration of electrons and holes can develop under illumination, only to be dissipated by entropy production (i.e., via recombination of charge carriers and back reactions enhanced by slow kinetics). Mathematically, $T_R S'_{\text{tot}}$ is likely to decrease the power output of a quantum solar converter as T_R increases. In addition, the reversible work (W_{rev}) decreases with increasing temperatures. Therefore, the theoretical framework and the model systems Ag$_2$O and AgCl both illustrate the difficulty in putting together a practical metal oxide system that might convert solar energy into fuels simultaneously, using both photochemistry and thermochemistry. These two modes of operation may conflict with each other unless special conditions are employed. Therefore, we turn our attention to purely photochemical, and then purely thermochemical, schemes for the production of fuels from sunlight.

Photochemistry and Photocatalysis for Fuels. Titanium dioxide (TiO$_2$) has long been known as an efficient photocatalyst, being stable in the presence of water and oxygen over a wide pH range. This allows it to split water, producing hydrogen and oxygen gas, under irradiation when it is biased with an external voltage sufficient to allow its Fermi level to rise above the redox potential for the H^+/H$_2$ redox couple.11,49,50 One can understand the energetics of this reaction from Figure 1 if one highlights the fact that the upper level (UL) is the conduction band (CB) for semiconducting TiO$_2$, and the lower level (LL) is the valence band (VB). Without bias, the CB for TiO$_2$ is, unfortunately, located below the acceptor level, A (i.e., the redox couple for hydrogen). This is the case for many oxide semiconductors that have been studied for photochemical water splitting or CO$_2$ reduction.9–12 To add an electron to the acceptor, which reduces it, extra energy is needed to move the chemical potential (i.e., the Fermi level) of the metal oxide above the acceptor level. This is one factor that limits the efficiency of metal oxide materials employed as photocatalysts for water splitting and CO$_2$ reduction.9–12 One should be pointed out that the redox potential for hydrogen is close to that of many of the CO$_2$ reduction reactions, so the same challenges present themselves for both fuel-forming reactions.127

Another limitation of metal oxides for solar fuel production is their large bandgap (e.g., ~3 eV for TiO$_2$), resulting in a poor utilization of the solar spectrum and a low solar energy conversion efficiency (at present, $\eta_{\text{solar-to-fuel}} < 2\%$ for AM1.5 irradiation).9,11,12,51 Another challenge is in the separation and collection of the hydrogen and oxygen gas produced by the reaction, which often are in close proximity. Applying Figure 1 to water splitting, D is equal to H$_2$O and the oxidized product (O$_2$) must be kept from a backward reaction with the H$_2$.

Because they can be tailored for bandgap and surface properties, nanoparticle catalysts have dominated research and development (R&D) on fuel production via solar photochemistry and photocatalysis.9,10 Utilizing thin films of hollow TiO$_2$ rods and tubes has resulted in higher solar conversion efficiencies with better possibilities for the separation of hydrogen and oxygen.11,50 The photocatalytic production of H$_2$ from the photoreforming of alcohols has recently been shown to be up to an order of magnitude higher when compared to the water splitting process.54 This is because TiO$_2$ and other metal oxides are efficient at breaking down organic compounds. This is a disadvantage when one wants to combine them with organic dyes and sensitizers to extend their useful range into the visible part of the solar spectrum. A result of this effect is that oxides like TiO$_2$ and ZnO have found practical uses in the photochemical detoxification of hazardous organic wastes and for the decontamination of surfaces.53,55,56

Recent progress in water splitting was highlighted in a review by Maeda3 and in the overview of recent advances using a variety of oxide semiconductors.12 Relevant to the prior discussion on Ag$_2$O, it has been found that improved photocatalysis is obtained from Ag/ZnO composites for which the catalytic surface properties, doping, charge carrier concentrations, and charge carrier mobilities can be more precisely controlled.52,53 A review of more-complex semiconductor oxides discussed their use for the conversion of solar energy into chemical fuels.57 Specifically, AgNbO$_3$, PbTiO$_3$, and CuNbO$_3$ (with bandgaps in the range of 3.2–2.0 eV) have emerged as promising metal oxide photocatalysts. While the optimum single-bandgap value for the most efficient use of the AM1.5 solar spectrum is ~1.4 eV, this increases to ~1.6–2.2 eV when overpotentials and kinetics are considered. The search for novel oxide materials for solar photochemistry is driven by this realization and an increasing ability to understand the correlation between an oxide’s electronic structure and the energetics necessary to reduce CO$_2$ or to split water to form H$_2$.

Oxides are also proving to be useful as the electrocatalysts necessary to produce O$_2$. Ordinarily, it is necessary to deposit small islands of rare or expensive metals (i.e., critical materials like Pt, Pd, Ni, or Ru) on the surface of the metal oxide to provide a catalytic site for the redox reaction to occur. A molecular manganese complex inspired by natural photosynthesis has, however, been successfully employed in a photoelectrochemical cell. Here, a ruthenium bipyridyl organo-metallic complex, a Ru(bipy) dye, is the light absorber that transfers electrons to a porous TiO$_2$ film (the primary electron acceptor), where they travel through an external circuit to a cathode to evolve O$_2$ at the manganese oxide complex.58 Quantum efficiencies are <2%, and the photocurrent densities are in the microamp per square centimeter (µA/cm2) range. Still, combining knowledge from biology with improvements in the understanding of the relationship between electronic structure and catalytic activity may open up new possibilities for rationally designed photocatalysts to produce fuels from sunlight. In addition to this capability, combinatorial techniques have proven useful for the identification of oxides and mixtures of oxides for photoelectrolysis and photochemistry.59

Alumino-silicate zeolites have also shown promise, allowing for enhanced charge separation and excited-state lifetime.60,63 These oxide cages can hold the donor and acceptor (shown in Figure 1) at a fixed and controllable distance that is analogous to the way that the photosystems are arranged in natural photosynthesis. Early work by Calzaferri and co-workers utilized silver as the sensitizer and light absorber trapped within the zeolite cage.40 One of the limitations of any nanoparticle photocatalyst is surface and interface recombination. Strategies for mitigating recombination and passivating defects in oxides are the subjects of intensive research.51

Nanoparticle films of TiO$_2$ are also utilized for another solar photochemical converter, namely, the dye-sensitized solar cell (DSSC).9,11,21,23 Tradeoffs between its performance and stability have limited the large-scale deployment of the DSSC, especially in light of the fact that other organic photovoltaics (OPVs) have achieved similar efficiencies in a fully solid-state device.64 However, as discussed previously, the DSSC can be coupled to oxygen- and hydrogen-evolving catalysts to produce...
fuels. More-complex ruthenium bipyridyl complexes, called polyoxometalates, have also been used with metal oxides recently to split water.

Table 1 and Figure 1, together with eqs 1a and 1b, are useful for conceptualizing recent advancements in various types of photochemical systems. The next section describes metal oxide systems that can be utilized thermochemically to produce fuels from concentrated sunlight. The reaction involved in these systems resembles the Ag2O thermal decomposition and metal reduction discussed previously.

Solar Thermochemical Production. The solar thermochemical production of fuels uses concentrated solar radiation as the energy source of high-temperature heat to drive highly endothermic reactions. Solar thermochemical approaches inherently operate at high temperatures and utilize the entire solar spectrum and, as such, provide thermodynamically favorable paths to efficient solar fuel production. Concentrating solar technologies—currently applied commercially for large-scale (MW) power generation—when coupled to high-temperature thermochemical reactors have the potential of reaching high solar-to-fuel energy conversion efficiencies and, consequently, producing solar fuels at large scale and at competitive costs.

Solar flux concentration ratios exceeding 2000 suns (1 sun = 1 kW/m²) are attainable with large-scale solar tower and dish systems, and higher concentrations are possible with the incorporation of secondary optics in tandem with the primary concentrating systems (e.g., compound parabolic concentrators). Such high solar radiation fluxes allow the conversion of solar energy to thermal reservoirs at 1500 K and above, which are needed for the thermochemical processes. Solar tower systems use a field of sun-tracking heliostats that focus the sun’s rays onto a solar receiver mounted on top of a centrally located tower. The Cassegrain optical configuration for the tower system makes use of a hyperboloidal reflector at the top of the tower to redirect sunlight to a solar receiver located on the ground level. Solar dish systems use sun-tracking paraboloidal mirrors to focus sunlight onto a solar receiver positioned at the focus. These solar-concentrating systems have been proven to be technically feasible in large-scale commercial power plants, which are based on heating a fluid—typically air, steam, synthetic oil, helium, or molten salt—with solar energy for further use in traditional Rankine, Brayton, and Stirling heat engines. Solar thermochemical applications, although not as far developed as solar thermal electricity generation, employ the same solar concentrating infrastructure with the solar reactor positioned at the focus of the solar tower (for MW centralized applications) or solar dish (for kW decentralized applications).

A recent comprehensive review of the solar concentrating technologies for thermal power and thermochemical fuel production is given in ref 66.

The single-step thermal dissociation of H2O or CO2, known as solar thermolysis, although conceptually simple, has been impeded by the need to operate at temperatures above 2500 K for achieving a reasonable degree of dissociation, and by the need of effective techniques for separating H2 and O2 or CO and O2 at high temperatures to avoid ending up with an explosive mixture. Among the ideas investigated were solar-heated semipermeable membranes made of ZrO2 and other ceramic materials, followed by electrolysis, or de Laval nozzle separation.

Thermochemical cycles bypass the fuel/O2 separation problem and further allow operation at relatively moderate upper temperatures. Previous studies performed on H2O-splitting thermochemical cycles were mostly characterized by the use of process heat at temperatures below ~1000 K, available from nuclear and other thermal sources. These cycles required multiple steps (>2) and were suffering from inherent inefficiencies associated with heat transfer and product separation at each step. In contrast, solar process heat at 1500 K and above enables the more-efficient two-step thermochemical cycles using metal oxide redox reactions. The H2O/CO2-splitting thermochemical cycle is shown schematically in Figure 5 and can be represented by

1st step: reduction

\[
\text{MO}_{\text{ox}} \rightarrow \text{MO}_{\text{red}} + \frac{1}{2}\text{O}_2
\]

2nd step: oxidation

\[
\text{MO}_{\text{red}} + \text{H}_2\text{O} \rightarrow \text{MO}_{\text{ox}} + \text{H}_2 \quad (7a)
\]
\[
\text{MO}_{\text{red}} + \text{CO}_2 \rightarrow \text{MO}_{\text{ox}} + \text{CO} \quad (7b)
\]

The first endothermic step is the solar thermal reduction of the metal oxide MOox to the metal or the lower-valence metal oxide MOred. The second, nonsolar, exothermic step is the oxidation of the reduced metal oxide with H2O and/or CO2 to form H2 and/or CO. The reoxidized metal oxide is recycled to the first step. The net reactions are H2O → H2 + 1/2O2 and CO2 → CO + 1/2O2. Since O2 and fuel (H2, CO) are released in separate steps, the need for high-temperature gas separation is thereby eliminated. The syngas mixture of H2 and CO can be further processed to liquid hydrocarbon fuels (via Fischer–Tropsch and other catalytic processes), such as diesel, kerosene, methanol, and gasoline, using existing conventional technologies. The second step can be accomplished on demand at the fuel consumer site, because it is exothermic and decoupled from the availability of solar energy.
The measure of how well solar energy is converted to chemical energy of the fuel for a given redox cycle is the solar-to-fuel energy conversion efficiency ($\eta_{\text{solar-to-fuel}}$), defined as

$$\eta_{\text{solar-to-fuel}} = -\frac{\Delta G^\circ \dot{n}_{\text{fuel}}}{Q_{\text{solar}}}$$

(8)

where Q_{solar} is the solar energy input (in watts), \dot{n}_{fuel} is the molar rate of fuel production (in units of mol/s), and ΔG° is the standard Gibbs free energy of the complete oxidation of the fuel (in J/mol), i.e., the maximum amount of work that may be extracted from the fuel produced under standard temperature and pressure (STP) conditions. Note that $\eta_{\text{solar-to-fuel}}$ is often reported based on ΔH instead of ΔG, i.e., based on the high heating value (HHV) of the fuel produced; the corresponding factor should be applied when comparing with the efficiency defined by eq 8.

Among candidate redox materials, ferrite-based and analogous “non-volatile” oxides exhibit relatively slow reaction rates, a degradation in reaction rates due to sintering, and losses due to uncontrolled sublimation, whereas ZnO, SnO$_2$, and analogous “volatile” oxides that sublime during decomposition require rapid quenching of gaseous products to avoid recombination. One promising volatile redox system is ZnO/Zn, for which the theoretical maximum $\eta_{\text{solar-to-fuel}}$ value is equal to 35%–50%, depending on the level of heat recovery.79–82

The ZnO dissociation proceeds at reasonable rates above 2000 K and 1 bar, while the products Zn(g) and O$_2$ must be quenched or separated at high temperatures to avoid their recombination.83,84 Various solar reactor concepts were examined experimentally, including entrained flows,85 packed beds,86 and rotating cavity receivers.87–89 The second step of the cycle (reactions 7a and 7b) has been demonstrated using an...
aerosol flow reactor for the in situ formation of Zn nanoparticles and oxidation with H2O90−95 and CO2.96 The high specific surface area of nanoparticles led to high Zn-to-ZnO conversions over short residence times due to augmented reaction kinetics and heat/mass transfer. However, the reactions primarily occurred heterogeneously outside the aerosol jet flow on surfaces with Zn deposition, making ZnO recovery problematic. Laboratory studies were also performed with steam bubbling through molten zinc,60 but such a concept requires continuous ZnO(s) skimming. Given the aforementioned limitations, fixed-bed reactors have been explored with the aim of maximizing both Zn conversions and ZnO recovery while alleviating some of the process technology issues associated with control and scaleup.98,99 Relatively slow kinetics due to sintering and limited mass transfer are major challenges in packed beds.100 Analogous to the ZnO/Zn redox system, the economic analysis for the production of methanol from H2O associated with control and scaleup.98,99 Relatively slow kinetics while alleviating some of the process technology issues the aim of maximizing both Zn conversions and ZnO recovery requires continuous ZnO(s) skimming. Given the aforemen-

A nonvolatile redox system extensively investigated is Fe2O3/FeO,81,82,102−104 which requires upper operating temperatures similar to those for the ZnO/Zn system, but without undergoing sublimation. For CO2 splitting, ηsolar-to-fuel = 29%, assuming no heat recovery during the quenching of products.82 Spinel ferrites of the form MFe3−xO4 (where M generally represents Ni, Zn, Co, Mn, or other transition metals) have been shown to be capable of splitting water at moderate—and more workable—upper operating temperatures.105−111 The drawbacks are associated with the need to provide an inert gas or vacuum pressures to drive the metal oxide reduction, which translates into an energy penalty, as well as the relatively small fraction of oxygen per unit weight of metal oxide liberated during the reduction, which introduces a scale-up limitation and imposes the need to recover sensible heat between the redox steps for achieving acceptable ηsolar-to-fuel. The solar reactor concepts tested include ferrite-coated monoliths,112,113 circulating fluidized beds,114 and rotating disks.115,116 The latter design concept utilizes two sets of beds of ferrite reactant materials in close proximity and rotating in opposite directions for thermal recuperation. Test operation of a 100-kW pilot plant based on a ferrite-based redox cycle was carried out using a monolith reactor at the solar tower of the Plataforma Solar de Almeria.117 Ceria-based oxides have emerged as attractive nonvolatile redox candidates, because it displays faster kinetics and better stability and selectivity, relative to the ferrite-based oxides.118−120 Figure 6 shows a solar chemical reactor configuration for performing both steps of the CeO2/ CeO2,8 cycle.121 The simultaneous splitting of H2O and CO2 was experimentally shown in consecutive cycles, yielding syngas with a H2:CO molar ratio that can be controlled by adjusting the H2O:CO2 molar ratio in the reacting gas.122 For example, H2:CO = 1.7:2 would be suitable for the processing to liquid hydrocarbon fuels (e.g., diesel, kerosene) via Fischer−Tropsch synthesis. For Qsolar = 3 kW, the experimental measured ηsolar-to-fuel value was 0.8% (based on the HHV of the fuel produced), but no attempt was yet undertaken to optimize the solar reactor for maximum efficiency.121 Both the efficiency and the cycling rates in the reactor were limited largely by thermal losses, resulting from poor conductive and radiative heat transfer across the porous ceria structure. A thermodynamic analysis indicates the potential of reaching ηsolar-to-fuel = 20% in the absence of heat recovery, and exceeding 30% by recovering the sensible heat of the hot products.122 A recent technoeconomic analysis for the production of methanol from H2O and CO2 via solar thermochemical redox cycles indicates that, with ηsolar-to-fuel approaching 20% (for a solar reactor mounted on a solar dish concentrator) and an overall system efficiency from solar to methanol of 7.1%, the methanol price would reach a break-even point and competitiveness vis-à-vis other renewable-resource-based alternatives.124

Comparison to Other Solar-to-Fuel Conversion Systems. It is useful to discuss the types of systems reviewed in this paper and to compare them to alternatives for the production of fuels from sunlight. One of the primary indicators used to compare approaches is the solar-to-fuel energy conversion efficiency, ηsolar-to-fuel defined by eq 8. Comparisons between thermochemical, electrolytic, photoelectrolytic, and photochemical solar-to-fuel production technologies have been made.125 Each approach has benefits and drawbacks that can help to set future priorities for the development of thermochemical and photochemical conversion systems.

Water electrolysis powered by solar generated electricity is currently more mature than other solar-to-fuel technologies. Photovoltaic and solar thermal electricity technologies are evidently much more developed compared to other schemes for harnessing solar energy. In the former, solar cells directly convert sunlight into electricity, while in the latter—known as Concentrating Solar Power (CSP)—solar receivers absorb concentrated solar radiation to generate steam for driving a Rankine-based heat engine. CSP further allows integration of thermal storage and hybridization with fossil-fuel backup for round-the-clock electric power dispatchability.66 Both PV and CSP technologies can be integrated with a water electrolyzer subsystem in centralized (MW) or decentralized (kW) configurations. The net product is H2, which can be utilized by itself as a fuel or combined with CO2 for processing liquid hydrocarbon fuels.

Assuming an electricity-to-H2 efficiency in the range of 65%−75% for the water electrolysis step, the theoretical ηsolar-to-fuel value for water electrolysis-based solar-to-fuel systems can approach 30%.11 For PV-powered water electrolysis, ηsolar-to-fuel = 7%−10% is expected for typical PV efficiencies near 15%. Conibear and Richards132 reported that, using high-efficiency multijunction solar cells based on Group III–V elements, solar-to-H2 efficiencies of 15% were achievable. Using Group III–V materials (Ga0.35In0.65P−Ga0.8In0.2As dual-junction solar cells), an outdoor measured solar-to-H2 conversion efficiency of 18% has been achieved for a 96-cm2 prototype system with a polymer electrolyte membrane electrolyzer.133 Using standard crystalline silicon PV modules, researchers have investigated an experimental system for the production of H2 at 415 bar (with no mechanical compressor) suitable to refuel a fuel-cell-based automobile.134 For the combined PV−electrolyzer system, the ηsolar-to-fuel value approached 10%, which resulted from a PV efficiency of 15.2% and an electrolyzer efficiency of 60.3% at the intersection of their current−voltage curves.

The advantages of photoelectrochemical (photoelectrolytic) and photochemical systems include the assertion that they have fewer parts and are theoretically less likely to fail, if the remaining parts are reliable. In the former, two or more catalytic electrodes are connected to drive electrochemical reactions when they are exposed to sunlight. In this way, a separate electrolyzer is unnecessary and the electrical and electrochemical portions of water electrolysis (or, alternatively, CO2 reduction) are combined. In purely photochemical systems, the redox reactions can take place on small particles
and unconnected surfaces. These types of schemes are simpler in design than solar/electrolyzer systems, requiring no external or internal wiring.

Equations 1a and 1b and Figure 1 apply both to PV–electrolyzer systems and to photochemical/photoelectrochemical schemes. The former can be thought of as an electrochemical system biased by an external solar cell, while the latter can be thought of as being driven by an internal solar cell (i.e., the light absorber). Note that, for photochemical and photoelectrochemical processing, the numerator of eq 8 is limited to \(n(\mu_s - \mu_d) \), as defined in eqs 1a and 1b. The difference in chemical potentials drives the fuel-forming reaction (at \(-\Delta G^\circ\)) that stores energy.

To determine the value of \(\eta_{\text{solar-to-fuel}} \) from an experimental standpoint, an efficiency loss must be included to account for any voltage biasing necessary to bring the energy levels into proper alignment (see Figure 1). The reaction may also not produce fuel in its standard state (i.e., a pressure of 1 bar). Incorporating these aspects into eq 8, one obtains

\[
\eta_{\text{solar-to-fuel}} = -\left[-\Delta G^\circ + RT \ln \left(\frac{P^*}{P} \right) \right] \eta_{\text{fuel}} - V_{\text{bias}} I \frac{Q_{\text{solar}}}{\eta_{\text{fuel}}}
\]

where \(P \) is the partial pressure of the fuel produced and \(V_{\text{bias}} \) and \(I \) are, respectively, the voltage (in volts) and current (in amperes) necessary to bias the electrode. \(R \) is the molar gas constant \((8.314 \, \text{J} \, \text{K}^{-1} \, \text{mol}^{-1})\) and \(T \) is the absolute temperature. While the first two terms in the numerator are relevant for both thermochemical, photochemical, and photoelectrolysis systems, the bias term is not utilized for the purely thermochemical cycles described previously.

A typical experimental oxide-based photochemical system might produce \(\text{H}_2 \) \((\Delta G^\circ = -237.2 \, \text{kJ/mol})\) at a rate on the order of 1–100 \(\mu \text{mol} \) per hour per gram of catalyst. Oxide photocatalysts are frequently used at 10–100 \(\text{g/cm}^2 \). Bias voltages in the range of 0.1–0.5 \(\text{V} \) are often necessary, and currents are in the range of 1–10 mA. Given 1000 \(\text{W/m}^2 \) for AM1.5 sunlight, this would yield a \(\eta_{\text{solar-to-fuel}} \) value of \(10^{-7} \)–\(10^{-5} \) (0.001%–0.1%). Using oriented \(\text{TiO}_2 \) nanotubes, efficiencies approaching 10% have been reported for irradiation by UV lamps, but were <0.5% for full spectrum illumination (AM1.5 sunlight).\(^{11,50}\) Metal-oxide-based water-splitting schemes requiring biasing, either by connecting to a standard PV cell or using a chemical bias, yield solar conversion efficiencies of 0.5%–4%, depending on the light source used and how \(\eta_{\text{solar-to-fuel}} \) is reported.\(^{9,11,18,57}\)

A specific example comes from the photocatalytic \(\text{CO}_2 \) reduction using titanium dioxide \((\text{TiO}_2)\) unbiased by an external voltage.\(^{128}\) Substrates included both glass and flexible plastics. Isotopically labeled \(^{13}\text{CO}_2\) reduction rates of 0.34 \(\mu \text{mol} \cdot \text{h}^{-1} \cdot \text{m}^{-2} \) were observed using an ultraviolet (UV) lamp, but it is expected that the system would only be able to produce 2.1 \(\mu \text{mol} \cdot \text{m}^{-2} \cdot \text{yr}^{-1} \) per year under natural sunlight. Clearly, there is much room for efficiency improvements in photochemical and photoelectrochemical fuel-forming systems, and clear protocols for efficiency reporting will be of paramount importance as further advancements are made.

Hydrogen production from \(\text{H}_2\text{O} \) via solar thermochemical cycles is potentially more efficient and, consequently, thought to be less costly than using solar electricity to electrolyze water. Furthermore, the same solar reactor technology can be applied to produce CO from \(\text{CO}_2 \). The syngas mixture of \(\text{H}_2 \) and CO can be further processed to liquid hydrocarbon fuels using conventional catalytic processes. For the solar thermochemical approach, theoretical \(\eta_{\text{solar-to-fuel}} \) values exceeding 30% are often assumed, whereas for photoelectrolysis, the expected values are <15% and those for photochemistry are <5%. Solar-to-fuel systems with overall energy efficiencies above 20% can compete with the two-stage electrolysis-based systems described in this section. This, of course, depends on the scale of the installation and its economics. For example, a theoretical economic comparison between solar \(\text{H}_2 \) generation by means of thermochemical redox cycles and electrolysis has been performed using 50 MWt-scale concentrated solar thermal technologies.\(^{129}\) Hydrogen production costs ranging from 3.5–12.8 \(\text{€/kg} \) for the thermochemical cycle and 2.1–6.8 \(\text{€/kg} \) for electrolysis were obtained. A comparative assessment of solar \(\text{H}_2 \) production considered either CSP with thermal storage or PV with electrical storage to power a water electrolyzer.\(^{130}\) The overall efficiency of the CSP pathway was found to be double that for PV, mainly due to the thermodynamics at higher temperatures.

In the STEP (Solar Thermal Electrochemical Photo) system for \(\text{H}_2 \) production, a PV subsystem provides the voltage for a high-temperature electrolyzer, and the sunlight unused by the PV portion provides the heat.\(^{131}\) An economic assessment yielded a \(\text{H}_2 \) cost of $3/kg for \(\eta_{\text{solar-to-fuel}} = 14% \). For this scheme, eqs 1a and 1b describe the limits for the PV portion, but the effect of higher temperatures on the electrolyzer stage is decoupled from that subsystem for this hybrid system.

CONCLUSIONS

The processes and materials for the production of solar fuels and industrial feedstocks are diverse and often difficult to interrelate. Solar photochemistry involves reactions in which the conversion of solar energy into work can proceed directly without the need to convert light into heat. Solar cells can be thought of as a photochemical reaction between photons and semiconductor materials. Photochemical approaches utilizing semiconducting metal oxides currently suffer from low absorption and utilization of the solar spectrum and high recombination rates for the products of photoexcitation prior to their separation and collection. At the laboratory and research and development (R&D) level, comparing Ag2O to AgCl (and to ZnO) can provide fundamental insights to design better thermochemical and photochemical systems.

Solar thermochemistry has emerged as a viable path to utilize concentrated solar technology—currently applied commercially for large-scale (MW) power generation—for the conversion of \(\text{H}_2\text{O} \) and \(\text{CO}_2 \) into \(\text{H}_2 \) and CO. This syngas mixture, in turn, can be further processed to liquid hydrocarbon fuels for the transportation sector. Solar thermochemical cycles for splitting \(\text{H}_2\text{O} \) and \(\text{CO}_2 \) via metal oxide redox reaction have favorable thermodynamics, but solar-to-fuel energy conversion efficiencies above 10% are still pending experimental demonstration with robust and scalable solar reactors. It is clear from this review that thermochemical and photochemical systems have a long way to go to achieve their full potential and thus successfully compete with alternative approaches to produce fuels from sunlight.

AUTHOR INFORMATION

Corresponding Author

E-mail: inquiries@solideas.com.
Acknowledgments

Financial support by the Swiss Federal Office of Energy and the Swiss National Science Foundation is gratefully acknowledged. One of the authors (G.P.S.) would like to thank Dr. W. Rehwald, A. Frei, and W. Durisch (all from the Paul Scherrer Institute, Switzerland) and Dr. Yasuo Izumi (Chiba University, Japan) for their help and encouragement. The advice and guidance of Dr. Michael Grätzel (École Polytechnique Fédérale de Lausanne) and Dr. Harald Ries are acknowledged and greatly appreciated.

Dedication

This article is dedicated to the memory of Dr. Paul Kesselring, formerly Head of the General Energy Department at the Paul Scherrer Institute, a tireless mentor of young scientists, a visionary for sustainable energy, and an ardent promoter of international collaboration on solar fuels R&D.

References

supported NiFeO₄ and Fe₂O₃ powders and ceramic foam devices.

(111) Ishihara, H.; Kaneko, H.; Hasegawa, N.; Tamaura, Y.

(112) Agrafiotis, C.; Roeb, M.; Konstandopoulos, A. G.; Nallbandian, L.; Zaspalis, V. T.; Sattler, C.; Stobbe, P.; Steele, A. M.

(113) Roeb, M.; Sattler, C.; Klueser, R.; Monnerie, N.; De Oliveira, L.; Konstandopoulos, A. G.; Agrafiotis, C.; Zaspalis, V.; Nallbandian, L.; Steele, A.; Stobbe, P.

(114) Gokon, N.; Takahashi, S.; Yamamoto, H.; Kodama, T.

(116) Diver, R. B.; Miller, J. E.; Allendorf, M. D.; Siegel, N. P.; Hogan, R. E.

(118) Chueh, W. C.; Haile, S. M.

(119) Chueh, W. C.; Haile, S. M.
The thermochemical study of ceria: exploiting an old material for new modes of energy conversion and CO₂ mitigation. Phil. Trans. R. Soc. A 2010, 368, 3269–3294.

(120) Abanades, S.; Legal, A.; Cordier, A.; Peraudeau, G.; Flamant, G.; Julbe, A.

(121) Chueh, W. C.; Faler, C.; Abbott, M.; Scipio, D.; Furler, P.; Haile, S. M.; Steinfeld, A.

(122) Furler, P.; Scheff, J.; Steinfeld, A.

(123) Scheff, J.; Steinfeld, A.

(125) Wang, Z.; Roberts, R. R.; Naterer, G. F.; Gabriel, K. S.

(126) Bolton, J. R.